- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ullman, J (2)
-
Indyk, P. (1)
-
Jagielski, M (1)
-
Kearns, M (1)
-
Mahabadi, S. (1)
-
Mao, J (1)
-
Nguyen, H (1)
-
Oprea, A (1)
-
Roth, A (1)
-
Rubinfeld, R. (1)
-
Sharifi -Malvajerdi, A (1)
-
Ullman, J. (1)
-
Vakilian, A. (1)
-
Yodpinyanee, A. (1)
-
Zakynthinou, L (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)We present new differentially private algorithms for learning a large-margin halfspace. In contrast to previous algorithms, which are based on either differentially private simulations of the statistical query model or on private convex optimization, the sample complexity of our algorithms depends only on the margin of the data, and not on the dimension. We complement our results with a lower bound, showing that the dependence of our upper bounds on the margin is optimal.more » « less
-
Jagielski, M; Kearns, M; Mao, J; Oprea, A; Roth, A; Sharifi -Malvajerdi, A; Ullman, J (, International Conference on Machine Learining)Motivated by settings in which predictive models may be required to be non-discriminatory with respect to certain attributes (such as race), but even collecting the sensitive attribute may be forbidden or restricted, we initiate the study of fair learning under the constraint of differential privacy. Our first algorithm is a private implementation of the equalized odds post-processing approach of (Hardt et al., 2016). This algorithm is appealingly simple, but must be able to use protected group membership explicitly at test time, which can be viewed as a form of “disparate treatment”. Our second algorithm is a differentially private version of the oracle-efficient in-processing approach of (Agarwal et al., 2018) which is more complex but need not have access to protected group membership at test time. We identify new tradeoffs between fairness, accuracy, and privacy that emerge only when requiring all three properties, and show that these tradeoffs can be milder if group membership may be used at test time. We conclude with a brief experimental evaluation.more » « less
-
Indyk, P.; Mahabadi, S.; Rubinfeld, R.; Ullman, J.; Vakilian, A.; Yodpinyanee, A. (, 20th International Workshop on Approximation Algorithms for Combinatorial Optimization Problem (APPROX 2017))We study the Fractional Set Cover problem in the streaming model. That is, we consider the relaxation of the set cover problem over a universe of n elements and a collection of m sets, where each set can be picked fractionally, with a value in [0,1]. We present a randomized (1+a)-approximation algorithm that makes p passes over the data, and uses O(polylog(m,n,1/a) (mn^(O(1/(pa)))+n)) memory space. The algorithm works in both the set arrival and the edge arrival models. To the best of our knowledge, this is the first streaming result for the fractional set cover problem. We obtain our results by employing the multiplicative weights update framework in the streaming settings.more » « less
An official website of the United States government

Full Text Available